The original version of this story appeared in Quanta Magazine.
Imagine you had a friend who gave different answers to the same question, depending on how you asked it. “What’s the capital of Peru?” would get one answer, and “Is Lima the capital of Peru?” would get another. You’d probably be a little worried about your friend’s mental faculties, and you’d almost certainly find it hard to trust any answer they gave.
That’s exactly what’s happening with many large language models (LLMs), the ultra-powerful machine learning tools that power ChatGPT and other marvels of artificial intelligence. A generative question, which is open-ended, yields one answer, and a discriminative question, which involves
→ Continue reading at WIRED