How to Teach Computational Thinking

Computational thinking is going to be a defining feature of the future—and it’s an incredibly important thing to be teaching to kids today. There’s always lots of discussion (and concern) about how to teach mathematical thinking to kids. But looking to the future, this pales in comparison to the importance of teaching computational thinking. Yes, there’s a certain amount of mathematical thinking that’s needed in everyday life, and in many careers. But computational thinking is going to be needed everywhere. And doing it well is going to be a key to success in almost all future careers.

Doctors, lawyers, teachers, farmers, whatever. The future of all these professions will be full of computational thinking. Whether it’s sensor-based medicine, computational contracts, education analytics, or computational agriculture—success is going to rely on being able to do computational thinking well.

I’ve noticed an interesting trend. Pick any field X, from archeology to zoology. There either is now a “computational X” or there soon will be. And it’s widely viewed as the future of the field.

So how do we prepare the kids of today for this future? I myself have been involved with computational thinking for nearly 40 years now—building technology for it, applying it in lots of places, studying its basic science—and trying to understand its principles. And by this point I think I have a clear view of what it takes to do computational thinking. So now the question is how to educate kids about it. And I’m excited to say that I think I now have a good answer to that—that’s based on something I’ve spent 30 years building for other purposes: the Wolfram Language[1]. There have been ways to teach the mechanics of low-level programming for a long time, but what’s new and important is that with all the knowledge and automation that we’ve built into the Wolfram Language we’re finally now to the point where we have the technology to be able to directly teach broad computational thinking, even to kids.

I’m personally very committed to the goal of teaching computational thinking—because I believe it’s so crucial to our future. And I’m trying to do everything I can with our technology to support the effort. We’ve had Wolfram|Alpha[2] free on the web for years now. But now we’ve also launched our Wolfram Open Cloud[3]—so that anyone anywhere can start learning computational thinking with the Wolfram Programming Lab[4], using the Wolfram Language. But this is just the beginning—and as I’ll discuss here, there are many exciting new things that I think are now possible.

What Is Computational Thinking?

But first, let’s try to define what we mean by “computational thinking.” As far as I’m concerned, its intellectual core is about formulating things with enough clarity, and in a systematic enough way, that one can tell a computer how to do them. Mathematical thinking is about formulating things so that one can handle them mathematically, when that’s possible. Computational thinking is a much bigger and broader story, because there are just a lot more things that can be handled computationally.

But how does one “tell a computer” anything? One has to have a language. And the great thing is that today with the Wolfram Language we’re in a position to communicate very directly with computers about things we think about. The Wolfram Language is knowledge based: it knows about things in the world—like cities, or species, or songs, or photos we take—and it knows how to compute with them. And as soon as we have an idea that we can formulate computationally, the point is that the language lets us express it, and then—thanks to 30 years of technology development—lets us as automatically as possible actually execute the idea.

The Wolfram Language is a programming language. So when you write in it, you’re doing programming. But it’s a new kind of programming[5]. It’s programming in which one’s as directly as possible expressing computational thinking—rather than just telling the computer step-by-step what low-level operations it should do. It’s programming where humans—including kids—provide the ideas, then it’s up to the computer and the Wolfram Language to handle the details of how they get executed.

Programming—and programming education—have traditionally been about telling a computer at a low level what to do. But thanks to all the technology we’ve built in the Wolfram Language, one doesn’t have to do that any more. One can express things at a much higher level—so one can concentrate on computational thinking, not mere programming.

Yes, there’s certainly a need for some number of software engineers in the world who can write low-level programs in languages like C++ or Java or JavaScript—and can handle the details of loops and declarations. But that number is tiny compared to the number of people who need to be able to think computationally.

The Wolfram Language—particularly in the form of Mathematica[6]—has been widely used in technical research and development around the world for more than a quarter of a century[7], and endless important inventions and discoveries have been made with it. And all these years we’ve also been progressively filling out my original vision of having an integrated language[8] in which every possible domain of knowledge[9] is built in and automated. And the exciting thing is that now we’ve actually done this across a vast range of areas[10]—enough to support all kinds of computational thinking, for example across all the fields traditionally taught in schools.

Seven years ago we released Wolfram|Alpha[11]—which kids (and many others) use all the time to answer questions. Wolfram|Alpha takes plain English input, and then uses sophisticated computation from the Wolfram Language to automatically generate pages of results. I think Wolfram|Alpha is a spectacular illustration—for kids and others—of what’s possible[12] with knowledge-based computation in the Wolfram Language. But it’s only intended for quick “drive by” questions that can be expressed in fairly few words, or maybe a bit of notation.

So what about more complicated questions and other things? Plain English doesn’t work well for these. To get enough precision to be able to get definite results one would end up with something like very elaborate and incomprehensible legalese. But the good news is that there’s an alternative: the Wolfram Language—which is built specifically to make it easy to express complex things, yet is always precise and definite.

It doesn’t take any skill to use Wolfram|Alpha. But if one wants to go further in taking advantage of what computation makes possible, one has to learn more about how to formulate and structure what one wants. Or, in other words, one needs to learn to do computational thinking. And the great thing is that the Wolfram Language finally provides the language in which one can do that—because, through all the work we’ve put into it, it’s managed to transcend mere programming, and as directly as possible support computational thinking.

[Editor’s note: this article is excerpted from a longer blog post[13], which continues with examples and further context.]

Stephen Wolfram is the creator of Mathematica, the author of A New Kind of Science, the creator of Wolfram|Alpha, and the founder and CEO of Wolfram Research.

Trending on Xconomy

References

  1. ^ the Wolfram Language (www.wolfram.com)
  2. ^ Wolfram|Alpha (www.wolframalpha.com)
  3. ^ Wolfram Open Cloud (www.wolfram.com)
  4. ^ Wolfram Programming Lab (www.wolfram.com)
  5. ^ new kind of programming (www.youtube.com)
  6. ^ Mathematica (www.wolfram.com)
  7. ^ quarter of a century (www.mathematica25.com)
  8. ^ integrated language (www.wolfram.com)
  9. ^ domain of knowledge (www.wolfram.com)
  10. ^ vast range of areas (reference.wolfram.com)
  11. ^ Wolfram|Alpha (www.wolframalpha.com)
  12. ^ what’s possible (www.wolframalpha.com)
  13. ^ blog post (blog.stephenwolfram.com)

Similar Articles

Advertisment

Most Popular